Monitoring Technique

VARIMETER **Current Relav** MK 9053N

Product Description

The current relay MK 9053N of the VARIMETER series monitors single phase DC or AC voltage systems. The adjustment is made via potentiometers on the front of the device. Early recognition and preventive maintenance avoid interruptions of electrical plants and provides a higher operational and plant safety.

Circuit Diagrams

MK 9053N

Connection Terminals

Terminal designation	Signal description	
A1, A2	Auxiliary voltage	
i, k	Current measuring input	
11, 12, 14	1st changeover contact	
21, 22, 24	2nd changeover contact	
at MK 9053/1: Z1, Z2, Z3	Remote potentiometer for response value	

Safety Notes

Please observe when connecting a remote potentiometer to MK 9053N/1__:

Measuring circuit and remote potentiometer not galvanically separated. The voltage on on measuring circuit i, k / PE has connection to the remote potentiometer. The remote potentiometer has to be connected volt- and ground-free.

Translation DOLD of the original instructions

Your Advantages

- Preventive maintenance
- For better productivity •
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: Monitor DC and AC
- Measuring ranges from 2 mA up to 10 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit measuring ciruit
- With start-up delay
- With time delay, up to max. 100 sec
- As option with remote potentiometer
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- As option with pluggable terminal blocks for easy exchange
- of devices
 - With screw terminals
 - Or with cage clamp terminals
- Width: 22.5 mm

Approvals and Markings

1) Approval not for all variants

Applications

- Monitoring current in AC or DC systems •
- For industrial and railway applications •

Function

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:

The start up delay t_o operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay t_u is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators	
Green LED:	On, when auxiliary supply connected
Yellow LED:	On, when output relay acitvated

Function Diagram with Start-up Delay

On model MK 9053N/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

av parmice		
av pormiss		
av normice		
ax. permiss. Irrent 3 s On, 00 s Off		
1 A 4 A 8 A 8 A 20 A 20 A		
For DC currents exceeding the largest measuring range, the measuring range 15 150 mV or 6 60 mV of the BA 9054 and MK 9054N can be used with external shunt. For AC current exceeding the largest measuring range a current transformer can be used. For Example with secondary winding of 1 A or 5 A. The nominal load of the CT should be \geq 0.5 VA. Arithmetic mean value The AC-devices can also monitor DC current. The scale offset in this case is: $(\overline{1} = 0.90 \ I_{eff}) < 0.05 \% / K$		
f setting value		
f setting value		
uxiliary voltage)		

Time delay t_v:

Start-up delay t_a:

Auxiliary voltage U_{H} (A1, A2) for wide voltage range

Nominal voltage Voltage range		Frequency range	
AC/DC 24 80 V	AC 18 100 V	45 400 Hz; DC 48 % W	
AC/DC 24 80 V	DC 18 130 V	$W \le 5 \%$	
AC/DC 80 230 V	AC 40 265 V	45 400 Hz; DC 48 % W	
AC/DC 80 230 V	DC 40 300 V	$W \le 5 \%$	

Nominal consumption:

4 VA; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Infinite variable at logarythmic scale from 0 ... 20 s, 0 ... 30 s, 0 ... 60 s, 0 ... 100 s setting 0 s = without time delay

0.1 ... 20 s; 0.1 ... 60 s; 0.1 ... 100 s

Technical Data

Output

Contacts: Thermal current I _{th} :	2 changeover contacts 2 x 4 A	
Switching capacity		
to AC 15:	1.5 A / AC 230 V	IEC/EN 60947-5-1
to DC 13:	1 A / DC 24 V	IEC/EN 60947-5-1
Electrical life		
at 2 A, AC 230 V cos ϕ = 1:	10 ⁵ switching cycles	i
Short-circuit strength		
max. fuse rating:	6 A gG / gL	IEC/EN 60947-5-1
Mechanical life:	20 x 10 ⁶ switching c	vcles

General Data

Operating mode: Temperature range Operation:

Storage: Altitude: Clearance and creepage distances Rated impulse voltage / pollution degree: EMC Electrostatic discharge: HF irradiation 80 MHz ... 1 GHz: 1 GHz ... 2.7 GHz: Fast transients: Surge voltages Between wires for power supply: Between wire and ground: HF wire guided: Interference suppression: **Degree of protection** Housing: Terminals: Housing:

Vibration resistance:

Climate resistance: Terminal designation: Wire connection Screw terminals (integrated):

Insulation of wires or sleeve length: Plug in with screw terminals max. cross section for connection:

Insulation of wires or sleeve length: Plug in with cage clamp terminals max. cross section for connection:

min, cross section for connection: Insulation of wires or sleeve length: Wire fixing:

Stripping length: Fixing torque: Mountina: Weight:

Dimensions

Width x height x depth:

5-1

(higher temperature with limitations

IEC 60664-1

IEC/EN 61000-4-2

IEC/EN 61000-4-3

IEC/EN 61000-4-3

IEC/EN 61000-4-4

IEC/EN 61000-4-5

IEC/EN 61000-4-5

IEC/EN 61000-4-6

EN 55011

IEC/EN 60529

IEC/EN 60529

IEC/EN 60068-1

EN 50005

Continuous operation

- 40 ... + 50°C

on request)

≤ 2000 m

4 kV / 2

8 kV (air)

20 V/m

10 V/m

4 kV

2 kV

4 kV

10 V

IP 40

IP 20

8 mm

8 mm

0.5 mm²

10 mm

0.8 Nm DIN-rail

150 g

12 ±0.5 mm

Limit value class B

Thermoplastic with V0 behaviour

Amplitude 0.35 mm IEC/EN 60068-2-6

1 x 2.5 mm² stranded ferruled (isolated) or

2 x 1.5 mm² stranded ferruled (isolated)

1 x 2.5 mm² stranded ferruled (isolated)

1 x 2.5 mm² stranded ferruled (isolated)

Plus-minus terminal screws M3.5 box

terminals with wire protection or cage clamp terminals

according to UL subject 94

frequency 10 ... 55 Hz

1 x 4 mm² solid or

or 2 x 2.5 mm² solid

1 x 2.5 mm² solid or

1 x 4 mm² solid or

40 / 060 / 04

- 40 ... + 70°C

CCC-Data

Thermal current I_m: Switching capacity to AC 15: to DC 13:

4 A

1,5 A / AC 230 V IEC/EN 60 947-5-1 1 A / DC 24 V IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type

MK 9053N.12/010 AC 0.5 ... 5 A AC/DC 80 ... 230 V t 0 ... 20 s t 0.1 ... 20 s Article number: 0063176 For Overcurrent monitoring Measuring range:: AC 0.5 ... 5 A Auxiliary voltage U_H: AC/DC 80 ... 230 V Time delay by t.: 0...20s Start up delay t 0.1 ... 20 s Width: 22.5 mm

Ordering Example for Variants

22.5 x 90 x 97 mm

IEC/EN 60715

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

- 1. The unit has to be disconnected.
- 2. Insert a screwdriver in the side recess of the front plate.
- 3. Turn the screwdriver to the right and left.
- 4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3:

Remote potentiometer 470 KΩ Article number: 0050174

Setting

Example: Current relay AC 0.5 ... 5 A

AC according to type plate: i.e. the unit is calibrated for AC $0.5 \dots 5 A =$ measuring range

Response value AC 3 A Hysteresis AC 1.5 A

Settings Upper potentiometer: 0 Lower potentiometer: 0

0.6 (0.6 x 5 A = 3 A) 0.5 (0.5 x 3 A = 1.5 A)

The AC - devices can also monitor DC current. The scale offset in this case is: \overline{I} = 0.90 x I_{eff}

AC 0.5 ... 5 A is equivalent to DC 0.45 ... 4.5 A

Response value DC 3 A Hysteresis DC 1.5 A

 Settings
 0.66
 (0.66 x 4.5 A = 3 A)

 Lower potentiometer:
 0.5
 (0.5 x 3 A = 1.5 A)

Time delay of measuring circuit

X on: Measured value rise	$F = \frac{Measured value (after rise of measured value)}{1}$
	F = Setting value

X off: Measured value drops $F = \frac{Mesaured value (befor measured value drops)}{Setting value (hysteresis)}$

The diagram shows the typical delay of a standard devices depending on the measured values "X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter. The total reaction time of the device results from the adjustable delay t_v and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overcurrent detection with MK 9053N/010): Adjusted setting value X on = 2 A.

Due to a stalled motor the current rises suddenly to 10 A.

$$F = \frac{\text{Measured value (after rise of measured value)}}{\text{Setting value}} = \frac{10 \text{ A}}{2 \text{ A}} = 5$$

Reading from the diagram:

The output relay switches on after 31 ms at a setting t_=0.

Example for "X off" (undercurrent detection with MK 9053N/012):

Adjusted hysteresis setting value is 10 A.

The current drops suddenly from 23 A to 0 A.

$$F = \frac{\text{Mesaured value (befor measured value drops)}}{\text{Setting value (hysteresis)}} = \frac{23 \text{ A}}{10 \text{ A}} = 2.3$$

Reading from the diagram:

The output relay switches off after 70 ms at a setting t_=0.

E. Dold & Söhne GmbH & Co. KG • D-78120 Furtwangen • Bregstraße 18 • Phone +49 7723 654-0 • Fax +49 7723 654356