Monitoring Technique

VARIMETER
Current Relay
MK 9053N

Translation of the original instructions

11 - 10

Product Description

The current relay MK 9053N of the VARIMETER series monitors single phase DC or AC voltage systems. The adjustment is made via potentiometers on the front of the device. Early recognition and preventive maintenance avoid interruptions of electrical plants and provides a higher operational and plant safety.

Circuit Diagrams

MK 9053N

Connection Terminals
Terminal designation Signal description A1, A2 Auxiliary voltage i, k Current measuring input $11,12,14$ 1st changeover contact $21,22,24$ 2nd changeover contact at MK 9053/1_ : Z1, Z2, Z3 Remote potentiometer for response value

Safety Notes

Please observe when connecting a remote potentiometer to MK 9053N/1_ : Measuring circuit and remote potentiometer not galvanically separated. The voltage on on measuring circuit i, k / PE has connection to the remote potentiometer. The remote potentiometer has to be connected volt- and ground-free.

Your Advantages

- Preventive maintenance
- For better productivity
- Quicker fault locating
- Precise and reliable

Features

- According to IEC/EN 60255-1, IEC/EN 60947-1
- To: Monitor DC and AC
- Measuring ranges from 2 mA up to 10 A
- High overload possible
- Input frequency up to 5 kHz
- Galvanic separation between auxiliary circuit - measuring ciruit
- With start-up delay
- With time delay, up to max. 100 sec
- As option with remote potentiometer
- As option with manual reset
- Option with fixed settings possible
- LED indicators for operation and contact position
- As option with pluggable terminal blocks for easy exchange of devices
- With screw terminals
- Or with cage clamp terminals
- Width: 22.5 mm

Approvals and Markings

${ }^{1)}$ Approval not for all variants

Applications

- Monitoring current in AC or DC systems
- For industrial and railway applications

Function

The relays measure the arithmetic mean value of the rectified measuring current. The AC units are adjusted to the r.m.s value. They have settings for response value and hysteresis. The units work as overcurrent relays but can also be used for undercurrent detection. The hysteresis is dependent on the response value.

2 time delays are possible in different variants:
The start up delay t_{a} operates only when connecting the auxiliary supply. It disables tripping e.g. caused by an increased starting current of a motor. The response delay t_{v} is active after exceeding a response value. On overcurrent relays the delay is active when the current goes over the tripping value, on undercurrent relays when the current drops below the hysteresis value.

Indicators

Green LED:
On, when auxiliary supply connected
Yellow LED:

Function Diagram with Start-up Delay

On model MK 9053N/6_ _ with manual reset the contacts remain in the fault state after detecting a fault or after to has elapsed. The contacts are reset by disconnecting the supply voltage.

Technical Data

Input (i, k)

MK 9053N with 1 Measuring range for AC and DC					
Measuring range ${ }^{1)}$			max. perm. cont. current		max. permiss. current 3s On, 100 s Off
AC	DC		Device mount. without distance	with 5 mm distance	
$2-20 \mathrm{~mA}$	1.8-18 mA	1.5Ω	0.5 A	0.7 A	1 A
20-200 mA	$18-180 \mathrm{~mA}$	0.15Ω	1.5 A	2 A	4 A
30-300 mA	27-270 mA	0.1 ת	2 A	2.5 A	8 A
50-500 mA	45-450 mA	0.1 ת	2 A	2.5 A	8 A
0.1- 1 A	0.09-0.9 A	$30 \mathrm{~m} \Omega$	3 A	4 A	8 A
0.5- 5 A	0.45-4.5 A	$6 \mathrm{~m} \Omega$	8 A	11 A	20 A
1-10 A	0.9-9 A	$3 \mathrm{~m} \Omega$	12 A	15 A	20 A

1) DC or AC current $50 \ldots 5000 \mathrm{~Hz}$
(Other frequency ranges of $10 \ldots 5000 \mathrm{~Hz}$, e.g. $16 \frac{2}{3} \mathrm{~Hz}$
on request)

Extending of measuring

 range:
Measuring principle:

Adjustment:

Temperature influence

Setting Ranges

Setting

Response value:
Hysteresis
At AC:
At DC:

Accuracy:

Response value at
Potentiometer right stop (max): $0 \ldots+8$ \%
Potentiometer left stop $(\min): \quad-10 \ldots .+8 \%$
Repeat accuracy
(constant parameter): $\leq \pm 0.5 \%$
Recovery time
At devices with manual reset
(Reset by braking
of the auxiliary voltage)
MK 9053N/6_ _:
≤ 1 s
(dependent to function and auxiliary voltage) Infinite variable at logarythmic scale from $0 \ldots 20 \mathrm{~s}, 0 \ldots 30 \mathrm{~s}, 0 \ldots 60 \mathrm{~s}, 0 \ldots 100 \mathrm{~s}$ setting $0 \mathrm{~s}=$ without time delay
Start-up delay t_{a} :

For DC currents exceeding the largest measuring range, the measuring range $15 \ldots 150 \mathrm{mV}$ or $6 \ldots 60 \mathrm{mV}$ of the BA 9054 and MK 9054N can be used with external shunt.
For AC current exceeding the largest measuring range a current transformer can be used. For Example with secondary winding of 1 A or 5 A . The nominal load of the CT should be $\geq 0.5 \mathrm{VA}$. Arithmetic mean value
The AC-devices can also monitor DC current. The scale offset in this case is: ($\bar{I}=0.90 I_{\text {eff }}$) $<0.05 \% / \mathrm{Kf}$

Time delay t_{v} :

Auxiliary voltage $\mathbf{U}_{\mathbf{H}}(\mathrm{A} 1, \mathrm{~A} 2)$ for wide voltage range

Nominal voltage	Voltage range	Frequency range
$\mathrm{AC} / \mathrm{DC} 24 \ldots 80 \mathrm{~V}$	AC $18 \ldots 100 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz}$ DC $48 \% \mathrm{~W}$
	$\mathrm{DC} 18 \ldots 130 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$
$\mathrm{~A} / \mathrm{DC} 80 \ldots 230 \mathrm{~V}$	$\mathrm{AC} 40 \ldots 265 \mathrm{~V}$	$45 \ldots 400 \mathrm{~Hz} ; \mathrm{DC} 48 \% \mathrm{~W}$
	$\mathrm{DC} 40 \ldots 300 \mathrm{~V}$	$\mathrm{~W} \leq 5 \%$

Nominal consumption:

4 VA ; 1.5 W at AC 230 V Rel. energized 1 W at DC 80 V Rel. energized

Technical Data		
Output		
Contacts:	2 changeover contacts	
Thermal current I_{th} :	$2 \times 4 \mathrm{~A}$	
Switching capacity		
to AC 15:	$1.5 \mathrm{~A} / \mathrm{AC} 230 \mathrm{~V}$ IEC/EN 60947-5-1	
to DC 13:	1 A / DC 24 V IEC/EN 60947-5-1	
Electrical life		
at $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V} \cos \varphi=1$:	10^{5} switching cycles	
Short-circuit strength		
max. fuse rating:	6 A gG / gL IEC/EN 60947-5-1 20×10^{6} switching cycles	
Mechanical life:		
General Data		
Operating mode:	Continuous operation	
Temperature range		
	$-40 \ldots+50^{\circ} \mathrm{C}$ (higher temperature with limitations on request)	
Storage:	$-40 \ldots+70^{\circ} \mathrm{C}$	
Altitude:	$\leq 2000 \mathrm{~m}$	
Clearance and creepage distances		
Rated impulse voltage /		
EMC		
Electrostatic discharge:	8 kV (air) IEC/EN 61000-4-2	
HF irradiation		
80 MHz ... 1 GHz :	$20 \mathrm{~V} / \mathrm{m}$ IEC/EN 61000-4-3	
1 GHz ... 2.7 GHz :	$10 \mathrm{~V} / \mathrm{m}$ IEC/EN 61000-4-3	
Fast transients:	4 kV IEC/EN 61000-4-4	
Surge voltages		
Between		
wires for power supply:	2 kV IEC/EN 61000-4-5	
Between wire and ground:	4 kV IEC/EN 61000-4-5	
HF wire guided:	10 V IEC/EN 61000-4-6	
Interference suppression:	Limit value class B EN 55011	
Degree of protection		
Housing:	IP 40 IEC/EN 60529	
Terminals:	IP 20 IEC/EN 60529	
Housing:	Thermoplastic with V0 behaviour according to UL subject 94	
Vibration resistance:	Amplitude 0.35 mm IEC/EN 60068-2-6 frequency $10 \ldots 55 \mathrm{~Hz}$	
Climate resistance:	40/060 / 04 IEC/EN 60068-1	
Terminal designation:	EN 50005	
Wire connection		
Screw terminals (integrated):		
	$1 \times 4 \mathrm{~mm}^{2}$ solid or $1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or $2 \times 2.5 \mathrm{~mm}^{2}$ solid	
Insulation of wires		
or sleeve length:	8 mm	
Plug in with screw terminals		
max. cross section		
for connection:	$1 \times 2.5 \mathrm{~mm}^{2}$ solid or $1 \times 25 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	
Insulation of wires		
or sleeve length:	8 mm	
cage clamp terminals max. cross section		
for connection:	$1 \times 4 \mathrm{~mm}^{2}$ solid or	
	$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)	
min. cross section		
for connection:	$0.5 \mathrm{~mm}^{2}$	
Insulation of wires		
or sleeve length:	$12 \pm 0.5 \mathrm{~mm}$	
Wire fixing:	Plus-minus terminal screws M3.5 box terminals with wire protection	
	or cage clamp terminals	
Stripping length:	10 mm	
Fixing torque:	0.8 Nm	
Mounting:	DIN-rail IEC/EN 60715	
Weight:	150 g	
Dimensions		
Width x height x depth:	$22.5 \times 90 \times 97 \mathrm{~mm}$	

CCC-Data

Thermal current I_{th} : 4 A
Switching capacity
to AC 15:
1,5 A / AC 230 V
IEC/EN 60 947-5-1
to DC 13:
1 A/DC 24 V
IEC/EN 60 947-5-1

Technical data that is not stated in the CCC-Data, can be found in the technical data section.

Standard Type

MK 9053N.12/010 AC $0.5 \ldots 5$ A AC/DC $80 \ldots 230 \mathrm{~V} \mathrm{t}_{\mathrm{v}} 0 \ldots 20 \mathrm{~s} \mathrm{t}_{\mathrm{a}} 0.1 \ldots 20 \mathrm{~s}$
Article number: 0063176

- For Overcurrent monitoring
- Measuring range:: AC 0.5 ... 5 A
- Auxiliary voltage U_{H} : AC/DC $80 \ldots 230 \mathrm{~V}$
- Time delay by t_{v} : $0 . .20 \mathrm{~s}$
- Start up delay t_{a} : $0.1 \ldots 20 \mathrm{~s}$
- Width: 22.5 mm

Ordering Example for Variants

energized on trip
11 Overcurrent relay de-energized on trip
12 Undercurrent relay de-energized on trip
13 Undercurrent relay energized on trip

0 Standard version without remote potentiometer
1 Standard version with remote potentiometer (responsevalue) $\mathrm{Z} 1, \mathrm{Z} 2, \mathrm{Z3}$ for $470 \mathrm{k} \Omega$ at this version there is no potentiometer for the response value
6 With manual reset, resetting by disconnecting the power supply

Type of terminals
Without indication: terminal blocks fixed, with screw terminals
PC (plug in cage clamp): pluggable terminal blocks with cage clamp terminals
PS (plug in screw): pluggable terminal blocks with screw terminals

Options with Pluggable Terminal Blocks

Screw terminal (PS/plugin screw)

Cage clamp (PC/plugin cage clamp)

Notes

Removing the terminal blocks with cage clamp terminals

1. The unit has to be disconnected.
2. Insert a screwdriver in the side recess of the front plate.
3. Turn the screwdriver to the right and left.
4. Please note that the terminal blocks have to be mounted on the belonging plug in terminations.

Accessories

AD 3: Remote potentiometer $470 \mathrm{~K} \Omega$ Article number: 0050174

Setting

Example:
Current relay AC 0.5 ... 5 A
AC according to type plate:
i.e. the unit is calibrated for AC
$0.5 \ldots 5 \mathrm{~A}=$ measuring range

Response value AC 3 A
Hysteresis AC 1.5 A

Settings

Upper potentiometer:
$0.6(0.6 \times 5 \mathrm{~A}=3 \mathrm{~A})$
Lower potentiometer:

$$
0.5 \quad(0.5 \times 3 \mathrm{~A}=1.5 \mathrm{~A})
$$

The AC - devices can also monitor DC current. The scale offset in this case is: $\bar{T}=0.90 \times I_{\text {eff }}$

AC $0.5 \ldots 5 \mathrm{~A}$ is equivalent to $\mathrm{DC} 0.45 \ldots 4.5 \mathrm{~A}$
Response value DC 3 A
Hysteresis DC 1.5 A

Settings

Upper potentiometer: $\quad 0.66 \quad(0.66 \times 4.5 \mathrm{~A}=3 \mathrm{~A})$
Lower potentiometer:
$0.5 \quad(0.5 \times 3 A=1.5 A)$

Characteristic

Time delay of measuring circuit

X on: Measured value rise

X off: Measured value drops $\mathrm{F}=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}$
The diagram shows the typical delay of a standard devices depending on the measured values " X on and X off" at sudden rise or drop of the signal. At slow change of the measured value the delay is shorter.
The total reaction time of the device results from the adjustable delay t_{v} and the delay created by the measuring circuit.

The diagram shows an average delay. The delay times could differ on the different variants.

Example for "X on" (overcurrent detection with MK 9053N/010):
Adjusted setting value X on $=2 \mathrm{~A}$.
Due to a stalled motor the current rises suddenly to 10 A .
$F=\frac{\text { Measured value (after rise of measured value) }}{\text { Setting value }}=\frac{10 \mathrm{~A}}{2 \mathrm{~A}}=5$
Reading from the diagram:
The output relay switches on after 31 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

Example for "X off" (undercurrent detection with MK 9053N/012):
Adjusted hysteresis setting value is 10 A .
The current drops suddenly from 23 A to 0 A .

$$
F=\frac{\text { Mesaured value (befor measured value drops) }}{\text { Setting value (hysteresis) }}=\frac{23 \mathrm{~A}}{10 \mathrm{~A}}=2.3
$$

Reading from the diagram:
The output relay switches off after 70 ms at a setting $\mathrm{t}_{\mathrm{v}}=0$.

